top of page

Machine Learning and Its Applications 

 

Machine Learning (ML) is a subset of Artificial Intelligence (AI) that provides systems with the ability to automatically learn and improve from experience without being explicitly programmed.  The basic premise of ML is to build algorithms that can receive input data and use statistical analysis to predict an output while updating outputs as new data becomes available. Things like growing volumes and varieties of available data, computational processing that is cheaper and more powerful, and affordable data storage are the main motivations toward machine learning developments. ML can be used for anomaly detection, system monitoring, security analysis, load prediction, load forecasting, etc. in cyber-physical systems. 

​

​

20190826134910-GettyImages-1132912604.jp
https___blogs-images.forbes.com_bernardm

Anomaly Detection in Smart CPSs
 

The deployment of smart technologies in the communication layer brings new challenges for online monitoring and control of the Cyber-Physical Systems (CPS). In addition to the failure of physical infrastructure, CPSs are also sensitive to different anomalies on their communication layer. Examples of CPS include smart grid, autonomous transportation systems, medical monitoring, and autonomous vehicles. AI is a popular technology that has the potential to be leveraged in different aspects of CPS monitoring including anomaly/failure detection. AI/ML can extract patterns of suspicious or anomalous behaviour in the system to predict failure in advance. 

​

AI and IoT Monitoring/Security 
 

Over the last decade, IoT platforms have been developed into a global giant that grabs every aspect of our daily lives. Because of easy accessibility and fast-growing demand for smart devices and networks, IoT is now facing more security challenges than ever before. There are lots of discussions about the role of AI/ML in security-aware design and analysis of IoT devices. AI-based methods can be used to identify various attacks at an early stage as well as providing defensive strategies. Moreover, AI seems to be promising in detecting new attacks using learning skills and handle them intelligently. 

​

dsgfdgfdh.jpg
future-energy-networks.jpg

AI-enabeld Smart Grid Analysis


The traditional grid is not scalable enough to provide the world’s future energy requirements. Looking at the big picture, a nationwide effort to completely automate the grid is underway. A smart grid integrates a variety of distributed and renewable energy resources which are tightly coupled with IoT technology. These components provide a vast amount of data to support various applications in the smart grid, such as distributed energy management, generation forecasting, grid monitoring, fault detection, home energy management, etc. Considering the huge amount of data and complexity of the grid,  AI techniques can be applied to automate and further improve the performance of the smart grid. 

Smart Framing Security Monitoring

 

Smart farming also known as precision agriculture is an emerging concept that refers to managing farms using technologies like IoT, robotics, and drones.  Whenever you use technology to create value, it presents an opportunity for cyber criminals to exploit it for evil purposes, and smart farming is not an exception. Even a short interruption in the refrigeration chain or other essential infrastructure for food distribution, or a targeted disruption of a highly time-sensitive process such as harvest, could cause major and long-lasting effects. Research on vulnerability prevention, threat mitigation, and cybersecurity at the design and development level are required to avoid significant economic losses.

ییی.jpg
bottom of page